Crystal calorimeters - improving rate capabilities

Intensity Frontier prospective

P.Murat (Fermilab)

Oct 06 2015

Introduction

- crystal calorimeters win when required energy resolution $\sigma_E/\sqrt{E} < 5-10\%$
- at very high energies: $\sigma_E/E = a/\sqrt{E} \oplus b \oplus c/E$, energy-dependent terms small
- with the increasing beam intensity handling of the pile-up becomes increasingly important
- focus shifts towards improving resolution between two interactions timing
- energy frontier: maintain energy resolution
- intensity frontier: preserve 1/L sensitivity scaling
- in case backround is dominated by random coincidences, single particle timing resolution also needs to improve
- what does it take to improve the rate capabilities of the crystal calorimeters by x10?

Intensity Frontier experiments: crystals

- crystal calorimeters of the current and coming intensity frontier experiments: KOTO(undoped CsI), Mu2E (BaF₂), COMET (LYSO), g-2(PbF2)
- fast scintillators, emission time $\tau < 50$ ns
- $\bullet~$ BaF2, CsI emit in UV region; Cherenkov emission $dN/d\lambda\sim 1/\lambda^2$ also UV
- readout requires UV-sensitive photodetectors
- BaF₂has unique rate capabilities : $\tau_{fast} < 1$ ns, 1800 photons / MeV
 - ▶ however, intensity of the slow emission component > 80% of the total
 - at high rates, the slow component needs to be suppressed

more on BaF2crystals

- energy resolution 2.5% at 1 GeV demonstrated (TAPS)
- light yield stable after 10 Krad

Photodetectors for BaF2calorimeter

- \bullet Mu2e is planning to read out ${\rm BaF_2with\ large\ area\ (9x9\ mm^2)\ UV-sensitive\ APDs}$
- these APD's also have an optical band filter solar blind
- the signal integration time 50-100 ns
- 1 ns fast scintllator calls for a photodetector with the response time of the order of 1 ns

Pulses from a pair of 8" MCP Al2O3 plates

microchannel plate-based detectors: full pulse within three nanoseconds

LAPPD MCP's lifetime measurements

- LAPPD MCP: requiar borosilicate glass, activated by atomic layer deposition (ALD)
- ullet emission-active layer: Al_2O_3 or MgO, gain up to (2-3)10⁷ with MgO
- lacktriangle remarkably, no signs of gain reduction up to 7 C/cm² for V > 1.5 kV
- no pre-amplification needed

MCP's in the magnetic field

- photodetectors have to operate in the magnetic field
- $\, \bullet \,$ PANDA RICH studies: Hamamatsu SL10 gain at B=1.5T is $\, \sim 60\%$ from the gain at B=0

non-alcali UV-sensitive photocatodes

U.Schühle, J.-F.Hochedez, "Solar-Blind UV detectors", in ISSI Scientific Report SR-009, ISBN: 978-92-9221-938-3

- wide band semiconductors: UV sensitive and solar-blind simultaneously
- GaN (band gap = 3.5 eV) used in astrophysics for quite some time
- wide-band semiconductors are radiation hard, many GaN devices intended for use in radiation-harsh environment

Opaque vs semi-transparent photocatodes

- can deposit GaN directly on MCP opaque mode photocathode
- $\bullet\,$ crystalline GaN (MBE at \sim 700 C) requires sapphire substrates
- amorphous photocatodes can be deposited at much lower temperature

GaN photocatodes: QE

Figure 9. Opaque QE vs. wavelength for 500nm GaN on Alumina substrates (107062701 solid alumina substrate, 107062601 - substrate with 25µm holes) compared with 150nm GaN (107062001 [two thermal procedures]).

Figure 10. QDE vs. wavelength for semitransparent GaN. 150nm GaN (107062001), 100nm GaN (106071702), both on sapphire, 30nm AlGaN, P doped up to 2 x 1019 cm-3

P.Murat (Fermilab)

- $QE_{opaque} \sim 30$ % at 220 nm
- transparent mode: lower QE overall, depends on the photocathode thickness

Readout: Pileup separation

- pileup in the calorimeters usually results in "extra energy"
- it also can result in the losses
- move towards readout base on waveform sampling, pulse shape analysis

Digitizing 5 ns long pulses: data volumes

- ullet waveform digitization: timing resolution @100 MeV : \sim (time bin) / 15-20
- \bullet leading edge of 1 ns : need sampling rate \sim 3 GHz or above
- for comparison, Mu2e calorimeter plans to use 200 MHz sampling rate
- with pulses shorter than 5 ns, can digitize a range of 10 ns instead of 100 ns per pulse
- data volume increases with occupancy, not with the sampling rate

Photodetector packaging

- can match the photodetector size to the crystal size light yield improvement
- $\bullet~$ SiPM/APD-based readout of g-2, Mu2e: ' $S_{photodetector}/S_{crystal}~\sim20\%$
- lacktriangle MCP-based photodetector can be made \sim 1" thin

there are open questions - always

- radiation hardness: individual components don't have much to suffer from radiation
- performance: what happens when a shower tail reaches the photodetector?
- relatively new device any long term effects ?
- LAPPD project made a low cost promise how low \$/channel could be for 1000 channels?

Summary

- radiation-hard BaF₂ crystals provide an excellent choice for the next generation high-rate crystal calorimeters - Mu2e is exploring this option
- MCP-based photodetectors with GaN photocathodes seem to be a natural match to the BaF₂ scintillator
- combination could lead to improving the rate capabilities of intensity frontier crystal calorimeters by an order of magnitude w/o sacrificing the energy and timing resolutions